Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674015

RESUMEN

Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.


Asunto(s)
Progresión de la Enfermedad , Vesículas Extracelulares , Leucemia Mieloide Aguda , Nicho de Células Madre , Humanos , Vesículas Extracelulares/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Microambiente Tumoral , Animales , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Médula Ósea/patología , Médula Ósea/metabolismo , Comunicación Celular , Transducción de Señal , Resistencia a Antineoplásicos
2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430163

RESUMEN

Monitoring measurable residual disease (MRD) is crucial to assess treatment response in Multiple Myeloma (MM). Detection of MRD in peripheral blood (PB) by exploring Extracellular Vesicles (EVs), and their cargo, would allow frequent and minimally invasive monitoring of MM. This work aims to detect biomarkers of MRD in EVs isolated from MM patient samples at diagnosis and remission and compare the MRD-associated content between BM and PB EVs. EVs were isolated by size-exclusion chromatography, concentrated by ultrafiltration, and characterized according to their size and concentration, morphology, protein concentration, and the presence of EV-associated protein markers. EVs from healthy blood donors were used as controls. It was possible to isolate EVs from PB and BM carrying MM markers. Diagnostic samples had different levels of MM markers between PB and BM paired samples, but no differences between PB and BM were found at remission. EVs concentration was lower in the PB of healthy controls than of patients, and MM markers were mostly not detected in EVs from controls. This study pinpoints the potential of PB EVs from MM remission patients as a source of MM biomarkers and as a non-invasive approach for monitoring MRD.


Asunto(s)
Vesículas Extracelulares , Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/metabolismo , Neoplasia Residual/diagnóstico , Biopsia Líquida , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo
3.
Front Cell Infect Microbiol ; 12: 920204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873153

RESUMEN

Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Animales , Médula Ósea/parasitología , Modelos Animales de Enfermedad , Humanos , Malaria/tratamiento farmacológico , Malaria Vivax/prevención & control , Ratones , Plasmodium vivax
4.
Semin Cancer Biol ; 83: 283-302, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33757848

RESUMEN

Despite improvements in the therapeutic approaches for hematological malignancies in the last decades, refractory disease still occurs, and cancer drug resistance still remains a major hurdle in the clinical management of these cancer patients. The investigation of this problem has been extensive and different mechanism and molecules have been associated with drug resistance. MicroRNAs (miRNAs) have been described as having an important action in the emergence of cancer, including hematological tumors, and as being major players in their progression, aggressiveness and response to treatments. Moreover, miRNAs have been strongly associated with cancer drug resistance and with the modulation of the sensitivity of cancer cells to a wide array of anticancer drugs. Furthermore, this role has also been reported for miRNAs packaged into extracellular vesicles (EVs-miRNAs), which in turn have been described as essential for the horizontal transfer of drug resistance to sensitive cells. Several studies have been suggesting the use of miRNAs as biomarkers for drug response and clinical outcome prediction, as well as promising therapeutic tools in hematological diseases. Indeed, the combination of miRNA-based therapeutic tools with conventional drugs contributes to overcome drug resistance. This review addresses the role of miRNAs in the pathogenesis of hematological malignances, namely multiple myeloma, leukemias and lymphomas, highlighting their important action (either in their cell-free circulating form or within circulating EVs) in drug resistance and their potential clinical applications.


Asunto(s)
Vesículas Extracelulares , Neoplasias Hematológicas , MicroARNs , Mieloma Múltiple , Resistencia a Antineoplásicos/genética , Vesículas Extracelulares/genética , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Humanos , MicroARNs/genética
5.
Cancer Lett ; 501: 210-223, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33212158

RESUMEN

Tumour-associated macrophages have been implicated in pancreatic ductal adenocarcinoma (PDAC) therapy response and Extracellular vesicles (EVs) shed by macrophages might have a role in this process. Here, we demonstrated that large EVs released by anti-inflammatory human macrophages decreased PDAC cellular sensitivity to gemcitabine. Using proteomic analysis, chitinase 3-like-1 (CHI3L1) and fibronectin (FN1) were identified as two of the most abundant proteins in the cargo of macrophages-derived EVs. Overexpression of CHI3L1 and FN1, using recombinant human proteins, induced PDAC cellular resistance to gemcitabine through ERK (extracellular-signal-regulated kinase) activation. Inhibition of CHI3L1 and FN1 by pentoxifylline and pirfenidone, respectively, partially reverted gemcitabine resistance. In PDAC patient samples, CHI3L1 and FN1 were expressed in the stroma, associated with the high presence of macrophages. The Cancer Genome Atlas analysis revealed an association between CHI3L1 and FN1 gene expression, overall survival of PDAC patients, gemcitabine response, and macrophage infiltration. Altogether, our data identifies CHI3L1 and FN1 as potential targets for pharmacological inhibition in PDAC. Further pre-clinical in vivo work is warranted to study the possibility of repurposing pentoxifylline and pirfenidone as adjuvant therapies for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático/mortalidad , Proteína 1 Similar a Quitinasa-3/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Vesículas Extracelulares/metabolismo , Fibronectinas/metabolismo , Macrófagos/metabolismo , Neoplasias Pancreáticas/mortalidad , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína 1 Similar a Quitinasa-3/genética , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Vesículas Extracelulares/genética , Fibronectinas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pentoxifilina/farmacología , Proteómica , Piridonas/farmacología , Análisis de Supervivencia , Regulación hacia Arriba/efectos de los fármacos , Gemcitabina , Neoplasias Pancreáticas
6.
Cancers (Basel) ; 12(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485907

RESUMEN

Extracellular vesicles (EVs) are small membrane vesicles released by all cells and involved in intercellular communication. Importantly, EVs cargo includes nucleic acids, lipids, and proteins constantly transferred between different cell types, contributing to autocrine and paracrine signaling. In recent years, they have been shown to play vital roles, not only in normal biological functions, but also in pathological conditions, such as cancer. In the multistep process of cancer progression, EVs act at different levels, from stimulation of neoplastic transformation, proliferation, promotion of angiogenesis, migration, invasion, and formation of metastatic niches in distant organs, to immune escape and therapy resistance. Moreover, as products of their parental cells, reflecting their genetic signatures and phenotypes, EVs hold great promise as diagnostic and prognostic biomarkers. Importantly, their potential to overcome the current limitations or the present diagnostic procedures has created interest in bladder cancer (BCa). Indeed, cystoscopy is an invasive and costly technique, whereas cytology has poor sensitivity for early staged and low-grade disease. Several urine-based biomarkers for BCa were found to overcome these limitations. Here, we review their potential advantages and downfalls. In addition, recent literature on the potential of EVs to improve BCa management was reviewed and discussed.

7.
Cells ; 9(5)2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384712

RESUMEN

Extracellular vesicles (EVs) mediate intercellular signaling and communication, allowing the intercellular exchange of proteins, lipids, and genetic material. Their recognized role in the maintenance of the physiological balance and homeostasis seems to be severely disturbed throughout the carcinogenesis process. Indeed, the modus operandi of cancer implies the highjack of the EV signaling network to support tumor progression in many (if not all) human tumor malignancies. We have reviewed the current evidence for the role of EVs in affecting cancer hallmark traits by: (i) promoting cell proliferation and escape from apoptosis, (ii) sustaining angiogenesis, (iii) contributing to cancer cell invasion and metastasis, (iv) reprogramming energy metabolism, (v) transferring mutations, and (vi) modulating the tumor microenvironment (TME) by evading immune response and promoting inflammation. Special emphasis was given to the role of EVs in the transfer of drug resistant traits and to the EV cargo responsible for this transfer, both between cancer cells or between the microenvironment and tumor cells. Finally, we reviewed evidence for the increased release of EVs by drug resistant cells. A timely and comprehensive understanding of how tumor EVs facilitate tumor initiation, progression, metastasis and drug resistance is instrumental for the development of innovative EV-based therapeutic approaches for cancer.


Asunto(s)
Resistencia a Antineoplásicos , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Animales , Apoptosis , Humanos , Evasión Inmune , Modelos Biológicos , Neoplasias/inmunología
8.
Cancers (Basel) ; 12(2)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050631

RESUMEN

Multiple myeloma (MM) is the second most common blood cancer. Treatments for MM include corticosteroids, alkylating agents, anthracyclines, proteasome inhibitors, immunomodulatory drugs, histone deacetylase inhibitors and monoclonal antibodies. Survival outcomes have improved substantially due to the introduction of many of these drugs allied with their rational use. Nonetheless, MM patients successively relapse after one or more treatment regimens or become refractory, mostly due to drug resistance. This review focuses on the main drugs used in MM treatment and on causes of drug resistance, including cytogenetic, genetic and epigenetic alterations, abnormal drug transport and metabolism, dysregulation of apoptosis, autophagy activation and other intracellular signaling pathways, the presence of cancer stem cells, and the tumor microenvironment. Furthermore, we highlight the areas that need to be further clarified in an attempt to identify novel therapeutic targets to counteract drug resistance in MM patients.

9.
Drug Resist Updat ; 47: 100647, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31704541

RESUMEN

Cancer-derived extracellular vesicles (EVs) have been detected in the bloodstream and other biofluids of cancer patients. They carry various tumor-derived molecules such as mutated DNA and RNA fragments, oncoproteins as well as miRNA and protein signatures associated with various phenotypes. The molecular cargo of EVs partially reflects the intracellular status of their cellular origin, however various sorting mechanisms lead to the enrichment or depletion of EVs in specific nucleic acids, proteins or lipids. It is becoming increasingly clear that cancer-derived EVs act in a paracrine and systemic manner to promote cancer progression by transferring aggressive phenotypic traits and drug-resistant phenotypes to other cancer cells, modulating the anti-tumor immune response, as well as contributing to remodeling the tumor microenvironment and formation of pre-metastatic niches. These findings have raised the idea that cancer-derived EVs may serve as analytes in liquid biopsies for real-time monitoring of tumor burden and drug resistance. In this review, we have summarized recent longitudinal clinical studies describing promising EV-associated biomarkers for cancer progression and tracking cancer evolution as well as pre-clinical and clinical evidence on the relevance of EVs for monitoring the emergence or progression of drug resistance. Furthermore, we outlined the state-of-the-art in the development and commercialization of EV-based biomarkers and discussed the scientific and technological challenges that need to be met in order to translate EV research into clinically applicable tools for precision medicine.


Asunto(s)
Biomarcadores de Tumor/análisis , Resistencia a Antineoplásicos , Vesículas Extracelulares/química , Biopsia Líquida/métodos , Neoplasias/diagnóstico , Progresión de la Enfermedad , Humanos , Neoplasias/tratamiento farmacológico
10.
Food Funct ; 10(6): 3188-3197, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31165800

RESUMEN

Eucalyptus globulus Labill. is a widespread evergreen plant belonging to the Myrtaceae family. Several species of Eucalyptus are known to have a plethora of medicinal properties, particularly anti-tumor activity, which prompts the study of the chemical composition and bioactivity of extracts from this plant. Hereby, the main aims of this work were to (i) profile the phenolic compounds in E. globulus extracts prepared by decoction and infusion; (ii) test the cell growth inhibitory activity of E. globulus decoction and infusion, in three human tumor cell line models: colorectal, pancreatic and non-small cell lung cancer (HCT-15, PANC-1 and NCI-H460, respectively); and (iii) study the mechanism of action of the most potent extract in the most sensitive cell line. Our work demonstrated that both the decoction and infusion preparations revealed the presence of phenolic acids, flavonoids and gallotannins, the last group being the most abundant polyphenols found, especially two digalloyl-glucosides. Both extracts inhibited the growth of all the tumor cell lines tested. The decoction extract was the most potent in inhibiting the NCI-H460 cell growth (lower GI50 determined by sulforhodamine B assay), which could be due to its higher content of phenolic compounds. Hence, the effect of the decoction extract on the NCI-H460 cells was further investigated. For this, cell viability (by Trypan blue exclusion assay), the cell cycle profile and apoptosis (by flow cytometry), cell proliferation (by bromodeoxyuridine assay) and protein expression (by western blot) were analyzed. Two different concentrations of the extract (52 µg mL-1 and 104 µg mL-1, corresponding to GI50 and 2 × GI50 concentration) were tested in these studies. Remarkably, the E. globulus decoction extract caused a dose-dependent decrease in the NCI-H460 cell number, which was correlated with a cell cycle arrest in the G0/G1 phase, a decrease in cell proliferation and an increase in the expression of p53, p21 and cyclin D1 proteins. Interestingly, no differences were found in the levels of ds-DNA damage and in the levels of apoptosis. This work highlights the relevance of the Eucalyptus globulus Labill. extract as a source of bioactive compounds with potential anti-tumor activity.


Asunto(s)
Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Eucalyptus/química , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/genética , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Extractos Vegetales/química , Proteína p53 Supresora de Tumor/metabolismo
11.
J Tissue Eng Regen Med ; 12(3): e1433-e1440, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28865088

RESUMEN

The biological response to implanted biomaterials is a complex and highly coordinated phenomenon involving many different cell types that interact within 3D microenvironments. Here, we increased the complexity of a 3D platform to include at least 3 cell types that play a role in the host response upon scaffold implantation. With this system, it was possible to address how immune responses triggered by 3D biomaterials mediate recruitment of stromal cells that promote tissue regeneration, mesenchymal stromal/stem cells (MSC), or a foreign body response, fibroblasts. Primary human macrophages yielded the highest fibroblast recruitment when interacting with chitosan scaffolds but not polylactic acid. Interestingly, when there were MSC and fibroblasts in the same environment, macrophages in chitosan scaffolds again promoted a significant increase on fibroblast recruitment, but not of MSC. However, macrophages that were firstly allowed to interact with MSC within the scaffolds were no longer able to recruit fibroblasts. This study illustrates the potential to use different scaffolds to regulate the dynamics of recruitment of proregenerative or fibrotic cell types through immunomodulation. Overall, this work strengths the idea that ex vivo predictive systems need to consider the different players involved in the biological response to biomaterials and that timing of arrival of specific cell types will affect the outcome.


Asunto(s)
Materiales Biocompatibles/farmacología , Técnicas de Cocultivo/métodos , Fibroblastos/citología , Macrófagos/citología , Células Madre Mesenquimatosas/citología , Comunicación Celular/efectos de los fármacos , Células Cultivadas , Quitosano/farmacología , Dermis/citología , Fibroblastos/efectos de los fármacos , Humanos , Macrófagos/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Poliésteres/química , Andamios del Tejido/química
12.
J R Soc Interface ; 13(122)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27628173

RESUMEN

Despite the importance of immune cell-biomaterial interactions for the regenerative outcome, few studies have investigated how distinct three-dimensional biomaterials modulate the immune cell-mediated mesenchymal stem/stromal cells (MSC) recruitment and function. Thus, this work compares the response of varied primary human immune cell populations triggered by different model scaffolds and describes its functional consequence on recruitment and motility of bone marrow MSC. It was found that polylactic acid (PLA) and chitosan scaffolds lead to an increase in the metabolic activity of macrophages but not of peripheral blood mononuclear cells (PBMC), natural killer (NK) cells or monocytes. PBMC and NK cells increase their cell number in PLA scaffolds and express a secretion profile that does not promote MSC recruitment. Importantly, chitosan increases IL-8, MIP-1, MCP-1 and RANTES secretion by macrophages while PLA stimulates IL-6, IL-8 and MCP-1 production, all chemokines that can lead to MSC recruitment. This secretion profile of macrophages in contact with biomaterials correlates with the highest MSC invasion. Furthermore, macrophages enhance stem cell motility within chitosan scaffolds by 44% but not in PLA scaffolds. Thus, macrophages are the cells that in contact with engineered biomaterials become activated to secrete bioactive molecules that stimulate MSC recruitment.


Asunto(s)
Movimiento Celular/inmunología , Quitosano/química , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Células Madre Mesenquimatosas/inmunología , Monocitos/inmunología , Poliésteres/química , Andamios del Tejido/química , Citocinas/inmunología , Humanos , Ensayo de Materiales
13.
Stem Cell Reports ; 6(4): 466-473, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27052313

RESUMEN

Strategies for improved homing of mesenchymal stem cells (MSCs) to a place of injury are being sought and it has been shown that natural killer (NK) cells can stimulate MSC recruitment. Here, we studied the chemokines behind this recruitment. Assays were performed with bone marrow human MSCs and NK cells freshly isolated from healthy donor buffy coats. Supernatants from MSC-NK cell co-cultures can induce MSC recruitment but not to the same extent as when NK cells are present. Antibody arrays and ELISA assays confirmed that NK cells secrete RANTES (CCL5) and revealed that human NK cells secrete NAP-2 (CXCL7), a chemokine that can induce MSC migration. Inhibition with specific antagonists of CXCR2, a receptor that recognizes NAP-2, abolished NK cell-mediated MSC recruitment. This capacity of NK cells to produce chemokines that stimulate MSC recruitment points toward a role for this immune cell population in regulating tissue repair/regeneration.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células Asesinas Naturales/metabolismo , Células Madre Mesenquimatosas/metabolismo , beta-Tromboglobulina/metabolismo , Células de la Médula Ósea/citología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CCL5/metabolismo , Quimiocina CCL5/farmacología , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Células Asesinas Naturales/citología , Células Madre Mesenquimatosas/citología , Modelos Biológicos , Compuestos de Fenilurea/farmacología , Receptores de Interleucina-8B/antagonistas & inhibidores , Receptores de Interleucina-8B/metabolismo , beta-Tromboglobulina/farmacología
14.
Sci Rep ; 5: 10079, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25974085

RESUMEN

Mesenchymal Stem/Stromal Cells (MSC) are a promising cell type for cell-based therapies - from tissue regeneration to treatment of autoimmune diseases - due to their capacity to migrate to damaged tissues, to differentiate in different lineages and to their immunomodulatory and paracrine properties. Here, a simple and reliable imaging technique was developed to study MSC dynamical behavior in natural and bioengineered 3D matrices. Human MSC were transfected to express a fluorescent photoswitchable protein, Dendra2, which was used to highlight and follow the same group of cells for more than seven days, even if removed from the microscope to the incubator. This strategy provided reliable tracking in 3D microenvironments with different properties, including the hydrogels Matrigel and alginate as well as chitosan porous scaffolds. Comparison of cells mobility within matrices with tuned physicochemical properties revealed that MSC embedded in Matrigel migrated 64% more with 5.2 mg protein/mL than with 9.6 mg/mL and that MSC embedded in RGD-alginate migrated 51% faster with 1% polymer concentration than in 2% RGD-alginate. This platform thus provides a straightforward approach to characterize MSC dynamics in 3D and has applications in the field of stem cell biology and for the development of biomaterials for tissue regeneration.


Asunto(s)
Movimiento Celular/fisiología , Rastreo Celular/métodos , Imagenología Tridimensional/métodos , Proteínas Luminiscentes/genética , Células Madre Mesenquimatosas/citología , Materiales Biocompatibles , Bioingeniería , Biomarcadores , Células de la Médula Ósea/citología , Supervivencia Celular , Células Cultivadas , Humanos , Trasplante de Células Madre Mesenquimatosas , Andamios del Tejido , Transfección , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...